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Discrete lattice effects on the forcing term in the lattice Boltzmann method
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We show that discrete lattice effects must be considered in the introduction of a force into the lattice
Boltzmann equation. A representation of the forcing term is then proposed. With the representation, the
Navier-Stokes equation is derived from the lattice Boltzmann equation through the Chapman-Enskog expan-
sion. Several other existing force treatments are also examined.
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The rapidly developing lattice Boltzmann method~LBM !,
a technique for modeling complex fluid systems, has
tracted much attention in a variety of fields@1,2#. There is a
wide range of fluid problems in which an external or intern
force is involved, such as water waves and multiphase
multicomponent fluids. To design lattice Boltzmann mod
for these systems, the force must be treated appropriate
order to obtain the correct hydrodynamics. In this pape
representation of the forcing term is proposed in which d
crete lattice effects are considered. Several other exis
methods are also examined.

The lattice Boltzmann equation~LBE! without a force can
be expressed as

f i~x1eiDt,t1Dt !2 f i~x,t !52
1

t
@ f i~x,t !2 f i

(eq)~x,t !#,

~1!

where f i(x,t) is the distribution function~DF! for particles
with velocity ei at positionx and timet, andDt is the time
increment. f i

(eq) is the equilibrium distribution function
~EDF! andt is the nondimensional relaxation time. The flu
densityr and velocityu are determined by the DF,

r5(
i

f i , ru5(
i

ei f i . ~2!

The EDF f i
(eq) in Eq. ~1! must be chosen such that the ma

and momentum are conserved and some symmetry req
ments are satisfied in order that the resulting macrosc
equations describe the correct hydrodynamics of the fl
being simulated. For example, in the D2Q9@3# model, the
particle velocities are defined bye05(0,0), ei5„cos@p(i
21)/2#,sin@p(i21)/2#…c for i 51 –4, and ei5A2„cos@p(i
29/2)/2#,sin@p(i29/2)/2#…c for i 55 –8. Here c5Dx/Dt,
andDx is the lattice spacing. The EDFs of D2Q9 are chos
to be f i

(eq)5Ei(r,u), where

Ei~r,u!5v irF11
e•u

cs
2

1
uu:~eiei2cs

2I !

2cs
4 G , ~3!
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with v054/9, v i51/9 for i 51 –4, and v i51/36 for i
55 –8. cs5c/A3 is the sound speed of the model. A tw
scale analysis in time will lead to the Navier-Stokes eq
tion.

In the presence of a body force densityF5rg, whereg is
the acceleration due toF, the LBE must be modified to ac
count for the force. We do this by adding an additional te
to the LBE:

f i~x1eiDt,t1D!2 f i~x,t !52
1

t
@ f i~x,t !2 f i

(eq)~x,t !#

1DtFi , ~4!

where the EDFf i
(eq) is defined by

f i
(eq)5Ei~r,u* ! with ru* [(

i
ei f i1mFDt. ~5!

Herem is a constant to be determined.
The forcing termFi can be written in a power series in th

particle velocity@4#,

Fi5v iFA1
B•ei

cs
2

1
C:~eiei2cs

2I !

2cs
4 G , ~6!

whereA, B, andC are functions ofF to be determined by
requiring that the moments ofFi are consistent with the hy
drodynamic equations. After some calculation, we can ob
the zeroth to second moments ofFi ,

(
i

Fi5A, (
i

eiFi5B, (
i

eieiFi5cs
2AI1

1

2
@C1CT#.

~7!

The macrodynamic behavior arising from the LBE~5! can
be found from a multiscaling analysis using an expans
parametere, which is proportional to the ratio of the lattic
spacing to a characteristic macroscopic length. To do this,
following expansions are introduced@5#:

f i5 f i
(0)1e f i

(1)1e2f i
(2)1•••, ~8a!
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]

]t
5e

]

]t1
1e2

]

]t2
, “5e“1 , ~8b!

F5eF1 , A5eA1 , B5eB1 , C5eC1 . ~8c!

Expanding f i(x1eiDt,t1Dt) in Eq. ~4! about x and t,
and applying the above multiscaling expansions to the res
ing continuous equation, we can obtain the following eq
tions in consecutive order of the parametere:

O~e0!: f i
(0)5 f i

(eq) , ~9a!

O~e1!: D1i f i
(0)52

1

tDt
f i

(1)1F1i , ~9b!

O~e2!:

] f i
(0)

]t2
1S 12

1

2t DD1i f i
(1)52

1

tDt
f i

(2)2
Dt

2
D1iF1i , ~9c!

whereD1i5]/]t11ei•“1.
Taking moments of Eq.~9b!, we can obtain the following

macroscopic equations on thet15et time scale andx15ex
space scale:

]r

]t1
1“1•~ru* !5A1 , ~10a!

]~ru* !

]t1
1“1•P (0)5S n1

m

t DF1 , ~10b!

where we assume thatB15nF1, and n is a constant to be
determined.P (0) is the zeroth-order momentum flux tens
given by Pab

(0)5( ieiaeib f i
(0)5cs

2rdab1rua* ub* . To recover
the Euler equations from Eqs.~10!, we must choose

A50, n1
m

t
51. ~11!

The first-order momentum fluxP (1)[( ieiei f i
(1) can be sim-

plified using Eq.~10! with the constraint Eq.~11!. After some
standard algebra, we obtain that

Pab
(1)52tDtF ~ua* F1b1ub* F1a!1cs

2r~“1aub* 1“1bua* !

2
1

2
~C1ab1C1ba!G ~12!

where the terms of orderO(u3) or higher have been ne
glected. If we takeC52uF1 or C5uF11F1u, then the mo-
mentum flux reduces to the Navier-Stokes expression for
viscous stresses, i.e.,Pab

(1)5s1ab[n(“1aub* 1“1bua* ),
where the kinematic viscosityn is given byn5cs

2tDt. This
is the expression forC given in Refs.@6–8#, and the kine-
matic viscosity is the same as in the solution of the conti
ous Boltzmann equation. For the LBE, however, the visc
04630
lt-
-

e

-
-

ity and the force are modified due to discrete lattice effec
These corrections are from thet25e2t time scale.

The macroscopic equations on thet25e2t time scale are
derived by taking moments of Eq.~9c!. With the aid of Eqs.
~10! and ~11!, the final equations can be written as

]r

]t2
5DtS m2

1

2D“1•F1 , ~13a!

]~ru* !

]t2
5DtS m2

1

2D ]F1

]t1
1“1•s1 ~13b!

where the stress tensors1 is now given by

s1ab52S 12
1

2t D“1•Pab
(1)2

Dt

4
~C1ab1C1ba!

5S t2
1

2D cs
2Dtr~“aub* 1“1bua* !

1DtF S t2
1

2D ~ua* F1b1ub* F1a!2
t

2
~C1ab1C1ba!G .

~14!

Clearly, there are additional contributions to the visco
stress due to the discrete lattice effects and the presenc
the body force. It is well known that the artifact due to th
lattice effect can be absorbed into a redefined viscosity,

n5S t2
1

2D cs
2Dt. ~15!

The contribution to the stress due to the force can also
canceled by choosing a proper definition ofC. One suitable
choice is taking

C5S 12
1

2t D2u* F or C5S 12
1

2t D ~u* F1Fu* !.

~16!

Equations~13! also indicate that the spatial and tempo
derivatives influence the density and momentum chang
respectively, on thet2 time scale. To eliminate these une
pected effects, one must take

m5
1

2
or ru* 5(

i
ei f i1

Dt

2
F. ~17!

Combining the results on thet1 and t2 time scales, Eqs
~10! and~11! together with Eqs.~11!, ~16!, and~17!, we now
obtain the final macroscopic equations:

]r

]t
1“•rv50 ~18a!

and
8-2
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]

]t
~rv!1“•~rvv!52“p1n“•@r~“v1~“v!T!#1F,

~18b!

wherep5cs
2r is the pressure, the shear viscosityn is given

by Eq. ~15!, andv is the fluid velocity defined by

rv5(
i

ei f i1
Dt

2
F. ~19!

As seen, Eqs.~18! are just the Navier-Stokes equations w
a body force.

From the above discussions, we can conclude that in o
to match the correct Navier-Stokes equations, the forc
term should satisfy the constraints Eqs.~11! and ~16! to-
gether with Eq.~17!, which gives

Fi5S 12
1

2t Dv iFei2v

cs
2

1
~ei•v!

cs
4

ei G•F, ~20!

and the equilibrium velocityu* and the fluid velocityv
should be given by Eqs.~17! and ~19!, respectively.

Now we examine some other existing treatments for
body force in the LBM. The usually used method~referred to
as method 1! @9# takesm50, A50, B5F, andC50, i.e.,
Fi5v iei•F/cs

2 , and the equilibrium velocityu* and fluid
velocity v are defined byrv5ru* 5( iei f i . This method
satisfies the constraint Eq.~11!, and thus obeys the Eule
equations on thet1 time scale. However, neither the contr
butions to the momentum due to the body force, nor
influences on the density and momentum due to the sp
and temporal variations of the force, are considered in
treatment. The final macroscopic equations correspondin
this method are

]r

]t
1“•~rv!52

Dt

2
“•F, ~21a!

]~rv!

]t
1“•~rvv!52“p1n“•@r~“v1~“v!T!#1F

2
Dt

2
e

]F

]t1
1S t2

1

2DDt“•~vF1Fv!.

~21b!

As can be seen, to match the Navier-Stokes equations
spatial and temporal changes of the body forceF should vary
slightly, and the last term in Eq.~18b! must be negligible. In
practical applications, this method is mainly used for flo
exposed to a constant body force. However, this last t
may not be small asF is a nonzero constant due to th
velocity gradient.

A recent representation of the forcing term was propo
by two groups independently starting from kinetic equatio
~referred to as method 2! @6–8#, which usesm50, A50,
B5F, and C52Fu* , namely, Fi5v i@(ei2u* )/cs

2

1(ei•u* )ei /cs
4#•F, and the equilibrium velocityu* and
04630
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fluid velocity v are defined byrv5ru* 5( iei f i . In this
treatment, the contribution of the external force to the m
mentum flux is considered. Unfortunately, the discrete latt
effect is not taken into account. The corresponding mac
scopic equations are

]r

]t
1“•~rv!52

Dt

2
“•F, ~22a!

]~rv!

]t
1“•~rvv!52“p1n“•@r~“v1~“v!T!#1F

2
Dt

2
e

]F

]t1
1

Dt

2
“•~vF1Fv!. ~22b!

The additional terms in Eqs.~22! are similar to those in Eqs
~21!, and the arguments for method 1 also apply to metho

Two improved versions of method 2 were proposed
Ladd and Verberg@4#. The first improvement~method 2a!
uses a redefinedC, C5(121/2t)(Fu* 1u* F), and the
other parameters and the definitions ofu* andv are the same
as in method 2. With this redefinedC, the contribution to the
momentum flux due to the body force, i.e., the term relat
to u* F1Fu* , is canceled. However, the influences of spat
and temporal variations of the force are still not consider
In fact, Ladd and Verberg assumed that the forceF is time
independent, and thatF is spatial uniform or the acceleratio
g is uniform @4#. The macroscopic equations of this meth
are

]r

]t
1“•~rv!52

Dt

2
“•F, ~23a!

]~ru* !

]t
1“•~ru* u* !52“p1n“•@r~“u* 1~“u* !T!#

1F2
Dt

2
e

]F

]t1
. ~23b!

Clearly, errors in the momentum equation due to the pr
ence of an external force are efficiently reduced. In fact, iF
is a constant, Eqs.~23! will match the correct hydrodynamic
equations.

Another improved version proposed by Ladd and Verb
~method 2b! uses the same representation ofFi and the defi-
nition of u* as used in method 2, but the fluid velocity
redefined asrv5( iei f i1(Dt/2)F. In this treatment the in-
fluence on the density due to the spatial variation of the fo
is considered, but the discrete lattice effects on the mom
tum flux are ignored. As a result, the macroscopic equati
become

]r

]t
1“•~rv!50, ~24a!
8-3
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]~rv!

]t
1“•~rvv!52“p1n“•@r~“v1~“v!T!#1F

1
Dt

2
e2

]F

]t2
2

3Dt2

4
“•~rgg!

2
Dt

2
n“•@r~“g1~“g!T!#. ~24b!

As seen, the continuity equation is already correct. But so
additional terms still appear in the momentum equation. T
term (Dt/2)e2]F/]t2 is negligible sincee andDt are small
parameters. But the terms of orderDt2

“•(rgg) and
Dt“•(r“g) may be large for spatially varying forces.

The last method~method 3! considered in this paper wa
proposed by Buick and Greated@5#; it uses the same param
eters and definitions ofv and u* as used in the metho
proposed in this work except for takingC50, i.e., Fi

5v i(121/2t)(ei•F)/cs
2 . The resulting macroscopic equa

tions derived from this method are

FIG. 1. Relative error differences between other methods
the present method for the Poiseuille flow.E0, present;Ex , others.
04630
e
e

]r

]t
1“•~rv!50, ~25a!

]~rv!

]t
1“•~rvv!52“p1n“•@r~“v1~“v!T!#1F

1S t2
1

2DDt“•~vF1Fv!. ~25b!

Obviously, this work takes account of the fact that in order
obtain the correct hydrodynamic equations a redefinition
the fluid velocity is needed to take account of the spatial a
temporal variations of the body force. The discrete latt
effects are also considered in this treatment. Unfortunat
the contributions of the force to the momentum flux are n
considered, and the momentum equation differs from the
Navier-Stokes equation by an additional term of ord
Dt“•(u* F1Fu* ). This result is different from what ha
been obtained in@5#, and it should be pointed out that th
momentum equation derived in Ref.@5# is incorrect.

From the discussion above, we can see that none of
five related methods considered can model the gen
Navier-Stokes equations correctly. Method 1, method 2,
method 2a lead to a continuity equation with an additio
term of orderDt“•F, and although method 2b and method
both give the correct continuity equation, neither produc
the true momentum equation. It is demonstrated that in or
to obtain the correct continuity equation, the fluid veloc
must be defined such that the effect of the external forc
included, and to obtain the correct momentum equation,
contributions of the force to the momentum flux must
canceled. The method proposed in this paper matches
conditions, and gives the correct equations of hydrodyna
ics.

It is noted that there exist some other methods in wh
the body force is not included into the LBM by adding
forcing term into the LBE. The recent work@5# reviewed
several such methods. It is also noticed that in the met

d

FIG. 2. Numerical velocityu(0,y) at time t5tc and 2tc for
Taylor vortex flow. Solid lines are the analytical solutions.
8-4
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proposed by Heet al. @10# the force is explicitly included in
the EDF, and a forcing term is added into the LBE witho
rigorous proof. However, both the redefined EDF and
forcing term contain terms of orderu3, which is inconsistent
with the whole system.

To verify the arguments mentioned above, we first appl
the present method and the other five methods to steady
seuille flow driven by a pressure gradient]p/]x52rG1
together with a body forcerG2, whereG1 andG2 are two
constants. The Poiseuille flow in a channel of width 2L has
the following steady analytical solution:

ua5u0S 12
y2

L2D , v50, ~26!

whereu05GL2/2n is the peak velocity, andG5G11G2 is
the total acceleration.

In simulations, the extrapolation scheme@11# is applied to
the upper and bottom walls of the channel for no-slip bou
ary conditions, and to the inlet and exit for pressure bou

FIG. 3. Relative error differences between other methods
the present method for the Taylor vortex flow.E0, present;Ex ,
others.
04630
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ary conditions. The pressure gradient and the body force
set to be equal, orG15G25G/2. The lattice size is fixed a
Nx3Ny534318. A set of runs is carried out with differen
values ofG. In each case, the flow reaches its steady s
after a number of iterations. The relative global errors
measured at the steady state between the LBM solution
the analytical solution given by Eq.~26!; the error is defined
by

E5

A( ~u2ua!2

A( ua
2

~27!

where u is the numerical solution, and the summation
taken over the entire system. It is found that the numer
results of the present forcing term are the most accurate in
cases considered. In Fig. 1, the relative differences betw
the errors of the other five methods and that of the pres
method, (Ex2E0)/E0, are plotted against the total acceler
tion G. HereE0 represents the error of the present meth
andEx represents the error of any one of the other five me
ods. One can observe that the errors produced by meth
1–3 are more or less larger than that of the present met
More specifically, method 1, method 2, and method
which do not satisfy the continuity equation, demonstr
similar behaviors and always produce larger errors than
other two methods, in which the continuity equation is sa
fied. It is also noted that the differences increase asG in-
creases. This is because whenG is small the macroscopic
equations of these six methods are nearly identical. But aG
becomes larger, the discrete lattice effects cannot be
glected any more.

A simulation for unsteady flow where the force depen
on both space and time was also carried out. The test p
lem is the two-dimensional Taylor vortex flow in a squa
box, which has the following analytical solution:

ua52u0cos~k1x!sin~k2y!exp@2n~k1
21k2

2!t#,

va5u0

k1

k2
sin~k1x!cos~k2y!exp@2n~k1

21k2
2!t#, ~28!

and the body force F5(Fx ,Fy) is given by Fx5
2(rk1G/2)sin(2k1x)exp@22n(k1

21k2
2)t#, Fy52(rk1

2G/
2k2)sin(2k2y)exp@22n(k1

21k2
2)t#, whereG5u0

2 is the ampli-
tude of the force. In simulation, the flow is confined in th
domain2p/2<x,y<p/2, which is covered by a lattice o
size Nx3Ny565365. The wave numbers are set to bek1
5k251.0, and the amplitude of the force is chosen to
G50.001 so that the compressibility of the fluid is neg
gible. The shear viscosityn is set to be 0.005. The flow is
initialized by evaluating the analytical solution att50, and
the extrapolation scheme@11# is again applied to the fou
boundaries for velocity boundary conditions. Numerical s
lutions att5tc andt52tc are plotted in Fig. 2 together with
the analytical solutions, wheretc5 ln 2/@n(k1

21k2
2)# is the time

d

8-5
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when the amplitude of vortex is halved. One can see that
agreement between the numerical and analytical solution
excellent.

We also applied the other five methods to Taylor vor
flow under the same conditions. The relative global errors
velocity field produced by each method were measured
compared with that by the present method. Here the rela
global error is defined by

E~ t !5

A( @u~ t !2ua~ t !#21@v~ t !2va~ t !#2

A( @u~ t !2ua~ t !#2

~29!

where the summation is taken over the whole system. In
3, the relative differences between the error obtained by e
of the five methods and that by the present method are p
ted as time proceeds. It is seen that the present method i
most accurate for this unsteady flow where the force chan
in both space and time. It is again observed that metho
y

04630
e
is

x
n
d
e

g.
ch
t-

the
es
1,

method 2, and method 2a demonstrate similar behaviors
this flow, and produce larger errors than the other two me
ods ~method 2b and method 3! which satisfy the continuity
equation. From these observations, we can see that dis
lattice effects do have influences on the behavior of
LBM, and should be considered in modeling fluids involvin
external or internal forces.

In summary, we have presented a method to include
body force into the LBM, in which the discrete lattice effe
and the contributions of the body force to the moment
flux are both considered. The LBE with the proposed forc
term can lead to the exact Navier-Stokes equations. S
related methods were also examined. It is found that non
these methods match the Navier-Stokes equations in the
eral case. Therefore, the present work should be of bene
designing lattice Boltzmann models for fluids exposed to
ternal and/or internal forces.
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